COMPLEXES OF ORGANOMETALLIC COMPOUNDS

XXXIII. THE COORDINATION CHEMISTRY OF DIMETHYL- AND DI-PHENYLTHALLIUM(III) WITH TRIDENTATE LIGANDS

L. PELLERITO, R. CEFALÙ and G. RUISI Istituto di Chimica Generale, Università di Palermo, 90123 Palermo (Italia) (Received May 15th, 1973)

SUMMARY

Several novel complexes Na[Me₂TlL] and Na[Ph₂TlL] (L^{2-} = dianion tridentate ligands with S, N, and O donor atoms) were synthesized, and investigated by infrared spectroscopy in the solid state, and by electronic and PMR spectroscopy in solution. Suggestions for the configuration of the complex anions are advanced and the nature of species present in solution is discussed.

INTRODUCTION

Few anionic complexes of organothallium(III) compounds are presently known. The first literature reports concerned the preparation of complexes K₂- $[(C_2H_5)_2TlF_4]^1$ and $K[C_6H_5Tl(CN)_3]^2$, the latter readily decomposing into $(C_6H_5)_2$ TICN. Complexes [M] $[(C_6F_5)_2$ TIX₂] $(M = Ph_4P^+, Et_4N^+; X = Cl, Br)$ were prepared, which are 1/1 electrolytes in acetone and methanol. The IR spectra of the chloro complexes were consistent³ with the presence of the tetrahedral anion $(C_6 F_5)_2 TlCl_2^-$. Barbieri et al.⁴ synthesized the compounds $[Me_4N]$ [PhTlCl₃] and $[Me_4N]_2$ [PhTlCl₄], which, according to osmometric measurements, give the complex anions $PhTlCl_3^-$ and $PhTlCl_4^{2-}$ in anhydrous methanol. In addition, Ph_4As^+ and $R_4 N^+$ salts of anionic halide and thiocyanate complexes of $R_2 T I^{III}$ and PhTI^{III} were obtained and investigated in anhydrous acetone, in which were formed the complex anions Me₂Tl(SCN)₂, Ph₂TlX₂ (X=Cl, Br, I, SCN) and PhTlX₃ (X=Cl, Br, I)⁵. These compounds were later investigated by IR spectroscopy in the solid state, as well as by conductivity in acetone and methanol, which showed that $[R_4N]$ [PhTlCl₃] and $[R_4N]_2$ [PhTlCl₄] are 1/1 and 2/1 electrolytes respectively⁶. The formation of complexes between organothallium(III) cations and halide as well as thiocyanate ligands was investigated also in aqueous solution, by paper electrophoresis and anion exchange paper chromatography^{7,8}.

There seems to be no report of organothallium(III) anionic species other than complexes with monodentate ligands. We recently demonstrated the ability of tridentate dianionic ligands (L^{2-}) to coordinate to organothallium centres⁹, and planned to investigate systems $R_2 T I^{III} - L^{2-}$, in which anions $R_2 T I L^-$ would presumably be

formed. This paper deals with the synthesis and structural spectroscopic studies of novel compounds $Na[R_2TIL]$ (R=Me, Ph), where L are tridentate ligands with sulphur, nitrogen and oxygen donor atoms.

EXPERIMENTAL

Reagents and solvents were analytical grade (C. Erba, Milano), and were purified and/or dried, where necessary, by standard procedures.

The ligands 4-(2-benzothiazolinyl)-2-pentanone, H_2Aat , and 2-(o-hydroxyphenyl)benzothiazoline, H_2Sat , were prepared as previously described¹⁰. The compounds Ph₂TlCl and Me₂TlCl were obtained by published methods^{11,5}

The complexes Na [Ph₂TIL] and Na [Me₂TIL] ($L^{2-} = Aat^{2-}$ and Sat²⁻) were synthesized by mixing methanolic solutions of L^{2-} , Schiff base forms, with methanolic suspensions or solutions of Ph₂TICl and Me₂TICl, in the ratio 1/1. The stable solid crystalline compounds slowly precipitated at room temperature. Analytical data are reported in Table 1. Sodium analyses were carried out by flame photometry using a Beckman DK2A spectrometer, and thallium analyses gravimetrically, according to literature methods^{12,13}

TABLE 1

Compound (colour)	Мр (°С)	Found (calcd) (%)								
		С	Н	0	N	S	Tl	Na		
Na[Ph_2 TlAat] (vellow)	145–147	47 32 (47 07)	3.78	2 77	2 51 (2 39)	5 44 (5 46)	34 83 (34 82)	3 35 (3 92)		
Na[Ph ₂ TlSat]	170–172	49 33	3 35	2 63	2.46	5 59	33.21	3 43		
(yellow)		(49 32)	(3 15)	(2 63)	(2.30)	(5 27)	(33 57)	(3 78)		
Na[Me ₂ TlAat]	144–146	34 01	3 82	3 32	3 00	6 82	43 93	5 10		
(pale yellow)	(dec)	(33 75)	(3 70)	(3 46)	(3 03)	(6 92)	(44 18)	(4 97)		
Na[Me ₂ TlSat]	92	37 03	3 08	3 30	2 90	6 61	42 38	4 70		
(red orange)	(dec)	(37 17)	(3 12)	(3 30)	(2 89)	(6 60)	(42 17)	(4 74)		

MELTING POINTS AND ANALYTICAL DATA

The IR spectra were recorded on Nujol and hexachlorobutadiene mulls in the range $4000-250 \text{ cm}^{-1}$, by a Perkin-Elmer 457 spectrometer, using CsI disks

The electronic spectra were measured in methanol at 25° using a Beckman DK 2A spectrometer with 1 cm optical path cells. The results are listed in Table 2.

The PMR spectra of $Me_2 Tl^{III}$ derivatives were obtained with a Jeol C 60 spectrometer operating at 25° in nearly saturated CDCl₃ or in deuterated DMSO, with TMS as internal standard. The chemical shifts and the coupling constants are listed in Table 3.

Owing to the very poor solubility of $Na[R_2TIL]$ in common organic solvents, no osmometric or conductometric studies could be carried out.

DISCUSSION

Inspection of Table 1 clearly shows that the analytical data are fully consistent

TABLE 2

Compound λ log a Na[Ph2TlAat]^b 277 318 350 (sh) Na [Ph, TlSat]* 256 (sh) 283 (sh) 315 (sh) 395 Na[Me2TlAat] 3 64 255 (sh) 3 62 312 Na [Me2 TISat] 280 (sh) 368 310 3 62

ELECTRONIC ABSORPTION SPECTRA OF Na[R2TIL] IN METHANOL⁴

^a The wavelengths $[\lambda (nm)]$ and absorptivities $[a, (M^{-1} cm^2)]$ refer to the band maxima and shoulders (sh) Concentrations range between 5 10^{-5} and 15 10^{-4} M ^b Saturated solutions.

TABLE 3

PMR SPECTRA OF Na[Me2TIL] AND Me2TICI

Compound	Solvent	(Tl)CH ₃	(C)CH ₃	СН	Arom	J(²⁰⁵ TlCH)
Na[Me, TlAat]	CDCl ₃	1 02	1 84 . 2.05	5 19	69-73	366
Na Me ₂ TlSat	CDCl	0 96	_ ,	8 4 3	64-75	356
Na Me ₂ TlAat ^b	$DMSO-d_6 + H_2O$	0 70	1 95°		68-75	405
Na[Me, TISat]	$DMSO-d_{6} + H_{2}O$	075			65-75	411
Me ₂ TICI	$DMSO-d_6 + H_2O$	0 85			- / -	429

^a δ (TMS)=0, δ in ppm; J in Hz ^b The signals due to methylene protons¹⁰ are obscured by H₂O signals, occurring at 3 2-35 δ ^c Integration corresponds to 6 protons

with 1/1 ligand/diorganothallium(III) stoichiometry, and imply the formation of R_2TL^- anions.

The IR spectra of Na[Ph₂TIL] and Na[Me₂TIL] essentially coincide with those of PhTIL⁹, R₂SnL¹⁰ and R₂PbL¹⁴, apart from bands associated with metalorganic radical vibrations, such as the strong absorption at 450 cm⁻¹ in Ph₂TIL⁻, which can be assigned to a Ph–Tl mode⁹. The strong broad bands occurring in the range 1605–1490 cm⁻¹ for Na[R₂TlAat], characteristic^{10,14} of coordinated Aat²⁻, may be assigned to C–C, C–N, C–O stretching vibrations^{10,14}. The stretching frequencies for coordinated C=N- in Na[R₂TlSat] probably lie at 1600 cm⁻¹, s(R = Ph) and 1610 cm⁻¹, s(R = Me), in accord with previous assignments^{10,13}. The attribution of experimental absorption bands to TlC₂ vibrational modes has been attempted by closely examining the spectra of the couples Me₂TlAat⁻/Ph₂TlAat⁻ and Me₂TlSat⁻/Ph₂TlSat⁻ in the 600–450 cm⁻¹ region, where these modes are expected to occur^{15,16} In Me₂TlAat⁻ there appears a medium intensity, rather broad band centered at 530 cm⁻¹, corresponding to a weak sharp band of Ph₂TlAat⁻ Two weak bands, missing in Ph₂TlSat⁻, occur at 515 and 470 cm⁻¹ in Me₂TlSat⁻ These two couples of Me₂TlL⁻ bands are tentatively assigned to v_{as} (TlC₂) and v_s (TlC₂) modes, respectively^{15,16}.

It can be concluded that Na [R₂TIL] complexes, in the solid state, contain L^{2-} (Schiff base form) coordinating R₂Tl^{III} through the S, N, and O donor atoms, and that the CTIC skeletons of Me₂TIL⁻ seem to display a bent configuration In the light of previous studies^{10,14,15}, we thus suggest a trigonal bipyramidal configuration for R₂TIL⁻, in which the bent CTIC moieties could be located in the trigonal plane (Fig. 1). The true structure may, of course, diverge from that idealized in Fig. 1, especially in view of the tendency of R₂TI^{III} moieties to maintain a linear arrangement³ On the other hand, Mössbauer studies on R₂SnL¹⁷, as well as preliminary X-ray data for Me₃SbL¹⁸ and R₂SnL¹⁹, tend to indicate that the coordinated L²⁻ maintains a more or less planar structure, from which a bent configuration has to be inferred for CTIC in R₂TIL⁻ containing a five-coordinated TI atom

Fig 1. Idealized structures for $[R_2TL]^-$ with $L^{2-} = Aat^{2-}$ and Sat^{2-}

The electronic spectra of Na[Ph₂TlL] suggest that chelation occurs also in methanol, as indicated by the appearance of new bands at longer wavelengths (Table 2) in comparison with the absorption bands of the free ligands¹⁰. The electronic spectra of Na[Me₂TlL], in methanol solution, on the other hand, are very similar to those of the free ligands¹⁰ (Table 2). This could imply the dissociation of Me₂TlL⁻ into Me₂Tl⁺ and L²⁻, the latter reacting with the solvent, or with traces of water contained in it, to give H₂Aat and H₂Sat. That coordinating solvents probably dissociate Me₂TlL⁻ into Me₂Tl⁺ and L²⁻, and that protolytic agents may induce the formation of H₂L in these conditions, is indicated by PMR spectra of Na[Me₂TlL] in dimethyl sulfoxide-d₆ containing water, (Table 3), where no vinyl or formimidoyl protons¹⁰ appear This does not seem the case for solutions in non-coordinating solvents such as CDCl₃, where the formimidoyl and vinyl protons, respectively, occur in Me₂TlSat⁻ and Me₂TlAat⁻ (Table 3), implying the presence of Aat²⁻ and Sat²⁻. Schiff base forms¹⁰. The ²⁰⁵Tl-H coupling constant values increase with the increasing donor strength of the solvents, as expected¹⁶.

ACKNOWLEDGEMENTS

The authors acknowledge financial support by C N.R. (Roma).

REFERENCES

- 1 E Krause, Ber Deut Chem Ges, 51 (1918) 1447
- 2 F Challenger and O V Richards, J Chem Soc, (1934) 405
- 3 G B Deacon, J H S Green and R S Nyholm, J Chem Soc., (1965) 3411
- 4 G Faraglia, L Roncucci Fiorani, B C L Pepe and R Barbieri, Inorg Nucl Chem Lett, 2 (1966) 277
- 5 G Faraglia, L Roncucci Fiorani, B C L Pepe and R Barbieri, J Organometal Chem, 10 (1967) 363
- 6 A G Lee, J Organometal Chem., 22 (1970) 537
- 7 G Faraglia, L Roncucci Fiorani, B C L Pepe and R Barbieri, Ric Sci., 37 (1967) 3
- 8 G Faraglia, A Cassol and R Barbieri, Proc Journées Hellénes de Séparation Immédiate et de Chromatographie (III J S I C), Ass Greek Chem Ed, Athens, 1966, p 271
- 9 L Pellerito, R Cefalù and G Ruisi, J Organometal Chem, 44 (1972) 243
- 10 R Cefalù, R Bosco, F Bonati, F Maggio and R Barbieri, Z Anorg Allg Chem, 376 (1970) 180; and references therein
- 11 F Challenger and B Parker, J Chem Soc, (1931) 1464
- 12 A I Vogel, A Textbook of Quantitative Inorganic Analysis, Longman, London, 3rd Ed., 1971, p 884
- 13 W M T Smith, Anal Chem, 20 (1948) 937
- 14 R Bosco and R Cefalù, J Organometal Chem, 26 (1971) 225
- 15 I R Beattle and P A Cocking, J Chem Soc, (1965) 3860
- 16 G D Shier and R S Drago, J Organometal Chem, 5 (1966) 330
- 17 R H Herber and R Barbieri, Gazz Chim Ital, 101 (1971) 149
- 18 J G Noltes, personal communication
- 19 F Huber, personal communication